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Self-Consistent Approximation for Fluids and
Lattice Gases1

D. Pini,2 G. Stell,2,3 and J. S. Hoye4

A self-consistent Ornstein-Zernike approximation (SCOZA) for the direct-
correlation function, embodying consistency between the compressibility and
the internal energy routes to the thermodynamics, has recently been quan-
titatively evaluated for a nearest-neighbor attractive lattice gas and for a fluid
of Yukawa spheres, in which the pair potential has a hard core and an attractive
Yukawa tail. For the lattice gas the SCOZA yields remarkably accurate predic-
tions for the thermodynamics, the correlations, the critical point, and the
coexistence curve. The critical temperature agrees to within 0.2% of the best
estimates based on extrapolation of series expansions. Until the temperature is
to within less than 1 % of its critical value, the effective critical exponents do not
differ appreciably from their estimated exact form, so that the thermodynamics
deviates from the correct behavior only in a very narrow neighborhood of the
critical point. For the Yukawa fluid accurate results are obtained as well,
although a comparison as sharp as in the lattice-gas case has not been possible
due to the greater uncertainty affecting the available simulation results, espe-
cially with regard to the position of the critical point and the coexistence curve.

KEY WORDS: coexistence curve; correlation function; critical point; lattice
gas; Ornstein-Zernike theory; thermodynamic consistency; Yukawa fluid.

1. INTRODUCTION

It is well known that the most popular liquid state theories based on an
integral equation for the two-particle correlation function suffer from a lack
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of thermodynamic consistency: that is, different routes to the thermo-
dynamics (typically, the compressibility, the virial, and the internal-energy
routes) yield different results [I]. This is quite a serious flaw. It is not
surprising, then, that several integral equations have been modified in such
a way that consistency between different routes is enforced. The generalized
mean spherical approximations (GMSA) of Stell and his colleagues repre-
sent one such approach that has proved useful in treating ionic and polar
fluid models [2], but it has not been fully developed for simple fluids. For
such fluids, self-consistent approaches include the modified hypernetted
chain (MHNC) and the Zerah-Hansen (also known as HMSA) integral
equation. While yielding remarkably accurate thermodynamics over most
of the phase diagram, the latter theories fail nevertheless to converge in the
neighborhood of the critical point, so that the top of the coexistence curve
is missing [3, 4].

In the present work we show that the requirement of thermodynamic
consistency can be used to get a closed theory which gives very good ther-
modynamics, including an accurate phase diagram. This approach is a self-
consistent Ornstein-Zernike approximation (SCOZA) formulated some
time ago [5] that has been recently applied to specific systems by solving
numerically the resulting partial differential equation (PDE). The systems
that have been studied so far are the nearest-neighbor attractive lattice gas
(i.e., the ferromagnetic Ising model) and a fluid of particles interacting via
a spherically symmetric pair potential consisting of a hard-core repulsive
term plus an attractive Yukawa tail. The work on the lattice gas discussed
here supplements that already reported in Ref. 6, to which we refer the
reader for further details.

2. THEORY

The SCOZA deals with a fluid of particles interacting by a two-body
potential v(r) that consists of a hard-core repulsion and a longer-ranged
attractive contribution w(r). If g(r) is the two-body radial-distribution func-
tion at r, c(r) is the Ornstein-Zernike two-body direct-correlation function,
and a is the hard-core diameter, the SCOZA in its simplest form amounts
to setting
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where A(p, B) is a function of the density p and of the inverse temperature
B= 1 ( k B T ) , Tbeing the absolute temperature and kE the Boltzmann con-
stant. The condition on g(r) (the so-called core condition) is exact and



stems from the hard-core repulsion, while the expression of c(r) is clearly
an approximation and implies that c(r) always has the same range as
the potential: this is usually referred to as the Ornstein-Zernike ansatz.
Equation (1) resembles the well-known mean-spherical approximation
(MSA) [ 1 ], except that in the present case the function A ( p , ft) is not fixed
a priori as in the MSA, where one has A =— B. Instead, it has to be
determined in such a way that the compressibility and the internal energy
route lead to the same thermodynamics. It is worthwhile stressing that con-
sistency is not enforced after the thermodynamics has been obtained
through one or the other route; instead, the thermodynamics must be
determined self-consistently. The consistency condition can be expressed as

Self-Consistent Approximation for Fluids 1031

where /red is the reduced compressibility as given by the zero-wavelength
limit of the structure factor, and u is the excess internal energy per particle,
obtained by integrating the pair interaction weighted by the radial-distribu-
tion function. When Eqs. (1) and (2) are supplemented by the exact
Ornstein-Zernike equation connecting g(r) and c(r),

a closed equation for A ( p , B ) is obtained. The calculation is considerably
simplified in those cases when the link between the quantities ^red and u
within the Ornstein-Zernike approximation can be written explicitly in
closed form. This is actually the case with the lattice gas and the Yukawa
fluid considered here. Equation (2) then becomes a nonlinear diffusive
PDE that can be integrated numerically.

3. LATTICE GAS

In the case of the lattice gas, the interaction potential v ( r ) is given by

where i and j label two generic lattice sites and w is the strength of the
nearest-neighbor interaction. According to Eq. (1), the only two non-
vanishing values of c ( r ) for the pair potential [Eq. (4)] are the on-site c0

and the nearest-neighbor c1. The thermodynamics and the correlations can



then be conveniently described [7] by the variable z = q p c 1 / ( 1 — pc0),
q being the coordination number of the lattice, and by the lattice Green's
function P(z) [8],

where <t>(k) is the Fourier transform of the nearest-neighbor potential and
p is a coefficient whose value depends on the particular lattice. If we intro-
duce the quantities y = [ P ( z ) — 1 ]/[zP(z)], cp =p(1 — p) y and the function
F such that z = F(y), we find that Eq. (2) can be cast in the following form:

The function <p(p, ft) is proportional to the excess contribution to the inter-
nal energy per unit volume with respect to the mean-field approximation.
The choice of tp(p, ft) as the unknown function has been determined by the
fact that the resulting Eq. (6) lends itself to numerical integration by an
implicit method [9] without making the computation very difficult. The
use of such a method is highly recommended in the case of the SCOZA
PDE, in order to avoid the problem of numerical instability, which would
become particularly severe in the critical and subcritical region. To
integrate Eq. (6), a set of boundary and initial conditions is also needed.
One finds easily that q>(p, B = 0) =(p(p = 0, B) = 0. Moreover, since Eq. (6)
preserves particle-hole symmetry, the integration with respect to the den-
sity can be carried out in the interval (0, 1/2), with the further boundary
condition that ( p ( p , B ) is symmetric with respect to p = 1/2. Particle-hole
symmetry also implies that the correct value of the critical density pc= 1/2
is obtained in SCOZA.

The critical temperature predicted by Eq. (6) has been located by the
divergence of the isothermal compressibility on the critical isochore. The
results are remarkably accurate: for instance, in the case of a simple cubic
lattice we obtain /?cw = 0.88503, while the best estimate obtained by
extrapolation of series expansions [10] is /?cw = 0.88662. The error is less
than 0.2%. Similar accuracy is obtained for the body-centered and the
face-centered cubic lattices as well [6]. A fit on a log-log plot for the com-
pressibility on the critical isochore and on the critical isotherm shows that
the effective critical exponents (the slopes of such plots) approach the
mean-spherical values of y = 2 and d = 5, respectively, as the critical point
is approached, but they deviate substantially from the true effective
exponents only very close to critical, when the reduced temperature,
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Fig. 2. Structure factor S(k) of the simple cubic
lattice gas along the direction kx = ky = kz as a
function of the norm of k at the critical density
/;= 1/2 and a temperature kBT/w= 1.5, if being the
strength of the attractive interaction. (x) SCOZA;
(—) approximant [11].

Fig. 1. Effective exponent Beff for a simple cubic
lattice gas with a nearest-neighbor potential as a
function of the logarithm of the reduced tem-
perature t = \T— TC\/TC. Beff is defined as the local
slope of log m vs log /, where m =\p — /Jc |pc. is the
reduced density.



1034 Pini, Stell, and Hoye

t= \T- TC\/TC, and density, m= \p-pc\/pc, are less than 10 - 2 . Similarly,
while the true specific heat at constant volume cv diverges at critical, the
SCOZA cv takes on a high but finite value. For example, for the simple
cubic lattice, it remains a bit higher than the true value until t ~ 1 0 - 5 .
Remarkably, for t down to 1 0 - 5 the effective critical exponent Beff

describing the coexistence curve shape appears to be approaching a value
much closer to the true value of 0.33 than the mean-spherical value of 0.5.
This is shown in Fig. 1. (See also the Note Added in Proof.) We also note
that both the overall thermodynamics and the correlations are faithfully
reproduced. This can be seen, for instance, in Fig. 2, where the structure
factor at the critical density p = 1/2 and a temperature kBT/w =1.5 is com-
pared with the results from a closed-form approximant [11]; the agree-
ment is very good.

4. YUKAWA HARD-CORE FLUID

The pair potential of the Yukawa hard-core fluid considered here is

where z is the inverse range of the interaction and we have set both the
hard-sphere diameter a and the strength e of the attractive tail equal to
unity. This amounts to using the reduced quantities p*=pa3 and
T* = kT/£. It has been shown [ 12] that for such a potential, any closure of
the form, Eq. (1), irrespective of the detailed form of the function A(p, ft),
allows one to express in closed form the internal energy per particle u as
a function of the inverse reduced compressibility l/^red. If we regard l//red

as the unknown function f ( p , B), Eq. (2) can then be cast in the form

where C(p, f) and D ( p , f ) are prescribed functions of p and f Equa-
tion (8) can be integrated numerically by an implicit algorithm [13]
similar to the one used for Eq. (6). The low-density boundary condition
corresponds to the perfect gas, so one has f(p = 0, B) = 1. At high density,
that is for p* ~ 1, the MSA for the internal energy has been used, and/has
then been determined by using Eq. (2) as an evolution equation. It has also
been determined that the system is quite insensitive to the specific choice
of the high-density boundary condition. Finally, at B = 0, f must be given
by its hard-sphere value. It should be observed that the closure [Eq. ( 1 ) ]
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to the Ornstein-Zernike equation (3) implies that the hard-sphere con-
tribution to c(r) vanishes outside the core, so that the treatment of the
hard-sphere gas in the present approximation coincides with the Percus-
Yevick (PY) one. While this is exact in the lattice-gas case, it is not fully
satisfactory for a continuous fluid, especially at high density. In order to
achieve a better description of the hard-sphere system, a further improve-
ment, which the authors have been developing, consists of adding to the
expression for c(r) given by Eq. (1) outside the core a nonvanishing con-
tribution cHS(r). For instance, cHS(r) can be a second Yukawa tail, with
amplitude and range determined in such a way that the resulting thermo-
dynamics of the hard-sphere fluid is given by the Carnahan-Starling equa-
tion of state [1]. This generalization appears to be fully feasible, since
many of the algebraic manipulations valid for a c(r) with a Yukawa tail
still hold when c(r) is a combination of two Yukawas [14]. If one is inter-
ested only in the thermodynamics of the fluid rather than its structure, one
can estimate the effect of using a more accurate hard-sphere theory by
simply replacing the PY hard-sphere contribution by the Carnahan-
Starling contribution [1] in the initial condition of Eq. (8) for B = 0. This
is what has been done to obtain the results reported here. Of course, on
theoretical grounds, the as-yet-to-be-evaluated version of the SCOZA,
which allows for a further contribution cHS(r) to c(r) for r>a in Eq. (1),
will yield the most reliable of our Yukawa-sphere results. (In this connec-
tion, see the Note Added in Proof and the results in Ref. 23.)

The critical point has been located by finding the highest temperature
at which there is a divergence of the compressibility. For an inverse range
z= 1.8, we obtain p* =0.315 and T* = 1.216. Describing the hard-sphere
contribution by the PY equation yields p* = 0.308 and T* = 1.201. In
Table I the critical density and temperature are compared with the results
from different theories [4] and Monte Carlo (MC) simulations [15, 16].

Table I. Critical Constants for the Hard-Sphere + Yukawa Fluid (z = 1 .8 )

pc*
Tc*

MC"

0.294
1.192

MC*

0.313
1.178

SCOZAC

0.315
1.216

MSAComp
d

0.308
1.031

HMSAe

0.36
1.25

MHNCe'

0.28
1.21

aFrom Ref. 15.
bFrom Ref. 16.
c Using Carnahan-Starling hard-sphere contribution (see text).
dThis work (from the compressibility route).
eFrom Ref. 4.
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Fig. 3. Coexistence curve of the Yukawa fluid in
the p* -T* plane for an inverse range parameter
r=1 .8 . (- -) SCOZA with Carnahan Starling
reference-system thermodynamics (see text), (x)
MC simulation by Smit and Frenkel [ 15]. (D) MC
simulation by Lomba and Almarza [ 16],

The agreement with the simulation results seems quite satisfactory,
although the relatively large discrepancy between the two simulations does
not allow for as sharp a comparison as in the lattice-gas case. A similar
consideration holds for the coexistence curve, which is reported in Fig. 3,
together with the MC results. It is worthwhile observing that the coexis-
tence curve given by the SCOZA extends up to the critical point, which is
not the case with other theories [4]. In Table II the compressibility factor

Table II. Compressibility Factor p V ( N k B T ) for the Hard-Sphere + Yukawa Fluid U = 1.8)

T*

2.0
2.0
2.0
1.5
1.5
1.5

/'*

0.4
0.6
0.8
0.4
0.6
0.8

MC"

1.08
2.04
4.27
0.69
1.21
3.31

SCOZA''

1.123
1.981
4.436
0.671
1.225
3.336

LOGA/ORPAen

1 .118
1 .974
4.432
0.663
1.214
3.330

a From Ref. 17.
b Using Carnahan-Starling (see text).
c From Ref. 18 (energy route).



is compared with the results from MC simulations [17] and from a numeri-
cal evaluation [18] of a result which is the lowest order gamma-ordered
approximation (LOGA) as well as the optimized random-phase approxi-
mation (ORPA). The LOGA/ORPA theory is known to be good in the
moderate-to-high-density regime sampled in that table [19].

One of the most interesting aspects of the Yukawa hard-core fluid is
the effect of the range of the attractive potential [determined by the
parameter z in Eq. (7)] upon the thermodynamics of the fluid. This
manifests itself in two quite separate ways—the location of the critical
point, which shifts to progressively higher densities as z increases, and the
behavior of the effective critical exponents. The smaller z is, the closer one
expects the critical exponents to approach their mean-field values as one
approaches the critical point before crossing over to their limiting values.
We observe both effects in our SCOZA results. We intend to give these
results in future publications.

5. CONCLUSIONS

Results for the nearest-neighbor attractive-lattice gas and preliminary
results for the Yukawa fluid suggest that the SCOZA is a quite reliable
liquid-state theory, which promises to yield both overall accurate results
for the thermodynamics and the correlations and a precise location of the
critical point and of the coexistence curve. The spherical-model character of
its critical behavior is detectable only in a very narrow region above the
critical point. This approach can also be extended to a variety of different
models; for instance, the theory has been recently formulated also for a
fluid in a porous medium [20] and for the D-vector model, i.e., a spin
system with spin dimensionality D greater than one [21].

NOTE ADDED IN PROOF

After this paper was completed we were able to obtain analytically
some asymptotic results for the SCOZA critical behavior below Tc. They
are not spherical-model-like. In particular, Bcoex = 7/20, where Bcoex =
lim ;^0/?eff. Reference 22 includes a brief description of those new results;
a report giving their full derivation is in preparation. In Ref. 23 we have
also evaluated and described in detail the version of SCOZA mentioned in
Section 4, in which cHS(r) is not set equal to zero for r>a. In that same
reference, new simulation results of high precision obtained for the hard-
core Yukawa fluid using finite-size scaling techniques are presented and
compared with our SCOZA results. Finally, for further applications of the
SCOZA to several other models, see Refs. 24-26.
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